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Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit
in 2012. Am J Physiol Cell Physiol 304: C2–C32, 2013. First published October 3,
2012; doi:10.1152/ajpcell.00227.2012.—The neuropeptides orexins and their G
protein-coupled receptors, OX1 and OX2, were discovered in 1998, and since then,
their role has been investigated in many functions mediated by the central nervous
system, including sleep and wakefulness, appetite/metabolism, stress response,
reward/addiction, and analgesia. Orexins also have peripheral actions of less clear
physiological significance still. Cellular responses to the orexin receptor activity are
highly diverse. The receptors couple to at least three families of heterotrimeric G
proteins and other proteins that ultimately regulate entities such as phospholipases
and kinases, which impact on neuronal excitation, synaptic plasticity, and cell
death. This article is a 10-year update of my previous review on the physiology of
the orexinergic/hypocretinergic system. I seek to provide a comprehensive update
of orexin physiology that spans from the molecular players in orexin receptor
signaling to the systemic responses yet emphasizing the cellular physiological
aspects of this system.

orexin receptor; OX1 receptor; OX2 receptor; neuropeptide; G protein-coupled receptor

IN 2002, I SUMMARIZED the initial knowledge regarding orexin
receptors in a review in American Journal of Physiology-Cell
Physiology (201). Orexins had made a kick-start with some
�290 articles published during that initial period. Work during
the subsequent 10 years has expanded and refined early ideas
through new knowledge, development, and application of new
techniques and critical thinking. Even so, answers to many key
questions, for instance, the physiological role of orexins out-
side the central nervous system (CNS) and existence of orex-
inergic neuron subpopulations, have been elusive. Many re-
views have appeared over the past 10 years but most have
focused on specific aspects of orexin physiology. My aim here
is to emphasize cellular mechanisms of orexin receptor signal-
ing but also to present the full spectrum of orexin physiology
at the tissue and organismal level.

Glossary

2-AG 2-arachidonoylglycerol
AC adenylyl cyclase

ACTH adrenocorticotropic hormone
AMPA 2-amino-3-(5-methyl-3-oxo-

1,2-oxazol-4-yl)propanoic
acid

anandamide N-arachidonoylethanolamine
BAT brown adipose tissue
BIM a neuroblastoma-hybridoma

cell line
CB1 and CB2 CB1 and CB2 cannabinoid

receptors, respectively

CHO Chinese hamster ovary-K1
(cells)

CMV cytomegalovirus
CNS central nervous system

cPLA2 cytosolic (Ca2�-sensitive)
PLA2

CRH corticotropin-releasing hor-
mone

CSF cerebrospinal fluid
DAG diacylglycerol

DAGL diacylglycerol lipase
DKO double-orexin receptor knock-

out (knockout of both OX1

and OX2 receptors)
EPSC and IPSC excitatory and inhibitory post-

synaptic current, respec-
tively

ERK extracellular signal-regulated
kinase

GABA �-aminobutyric acid
GFP green fluorescent protein

GIRK channels G protein-coupled inward
rectifier K� channels

GPCR G protein-coupled receptor
HLA human leukocyte antigen

HEK-293 human embryonic kidney cells
icv intracerebroventricular

IHC immunohistochemistry
IP3 inositol-1,4,5-trisphosphate

ITIM immunoreceptor tyrosine-
based inhibitory motif

ITSM immunoreceptor tyrosine-
based switch motif

iv intravenous
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Kir channels inward rectifier K� channels
MAPK mitogen-activated protein ki-

nase
MCH melanin-concentrating hor-

mone
MEK1 MAPK/ERK kinase 1
MHC major histocompatibility com-

plex
NCX Na�/Ca2� exchanger

neuro-2a a mouse neuroblastoma cell
line

NMDA N-methyl-D-aspartic acid
NMR nuclear magnetic resonance

NSCC nonselective cation channel
OX1 and OX2 OX1 and OX2 orexin recep-

tors, respectively
OX1- and OX2-KO OX1- and OX2-knockout, re-

spectively
PC12 a rat pheochromocytoma cell

line
PCR polymerase chain reaction
PI3K phosphoinositide-3-kinase

PI phosphatidylinostol
PIP phosphatidylinositol-4-phos-

phate
PIP2 phosphatidylinositol-4,5-

bisphosphate
PKA, PKB, PKC, and PKD protein kinase A, B, C, and D

PLA2, PLC, and PLD phospholipase A2, C, and D,
respectively

PPAR� peroxisome proliferator-ac-
tivated receptor-�

PPO preproorexin
PPO-KO PPO-knockout

PPO-pro-ataxin-3 knockin with ataxin-3 under
the proximal PPO pro-
moter

PPO-pro-channelrhodopsin-2 channelrhodopsin-2 under the
proximal PPO promoter (in
lentivirus)

PPO-pro-halorhodopsin knockin with halorhodopsin
under the proximal PPO
promoter

PTx pertussis toxin
RT-PCR reverse-transcriptase PCR

SAPK stress-activated protein ki-
nase

SHP-2 a protein tyrosine phospha-
tase

TM transmembrane helix (of
orexin receptor)

TTC-GFP knockin with GFP-fused to
the COOH-terminal teta-
nus toxin fragment under
the proximal PPO pro-
moter

TRPC transient receptor potential
channel of the canonical
subfamily

TTx tetrodotoxin

VGCC voltage-gated Ca2� chan-
nels

VLPO ventrolateral preoptic nucleus
wt wild-type

HISTORICAL PERSPECTIVE

The discovery of orexin peptides and receptors was re-
ported in two independent publications in 1998. de Lecea and
Sutcliffe with colleagues described two putative peptide trans-
mitters, encoded by the same propeptide (78). They named the
peptides hypocretins (“hypo” for hypothalamus, “cretin” for
the homology of hypocretin-2 with some incretin peptides).
The peptides were expressed in synaptic vesicles of hypotha-
lamic neurons, and hypocretin-2 was shown to be strongly neu-
roexcitatory in neuronal cultures. Shortly thereafter, Sakurai and
Yanagisawa used a different approach, deorphanization of a
putative G protein-coupled receptor (GPCR), HFGAN72, and
identified two peptide transmitters that activated the receptor,
the common precursor peptide and its gene, and, finally, a
second receptor based on a sequence homology search (307).
Furthermore, they investigated the peptide-receptor pharma-
cology, mapped the peptide and receptor mRNA expression in
the CNS, and linked the peptides to the regulation of appetite
by showing stimulation of feeding upon intracerebroventricular
infusion and increased peptide mRNA expression in the hypo-
thalamus upon fasting. The peptides were termed orexins for
their orexinergic function and the receptors OX1 and OX2

receptors. It was soon discovered that hypocretin-1 and
orexin-A as well as hypocretin-2 and orexin-B were the same
peptides. Both sets of names are still in use.

The next major breakthrough in orexin research occurred a year
later. The group of Mignot isolated two canarc gene mutations
responsible for hereditary canine narcolepsy; both mutations were
in the OX2 receptor gene, causing frameshift and premature stop
(218). Later, both mutants were shown to produce a receptor
blockade at intracellular sites (159). Yanagisawa’s group then
showed that knockout of the precursor peptide, preproorexin
(PPO), causes narcoleptic phenotype in mice (61). In 2000, a
report found orexin-A to be at very low or undetectable levels in
the cerebrospinal fluid (CSF) of human narcoleptics with cata-
plexy (270).

These findings began an avalanche of studies with mapping
of the orexinergic pathways, regulation of different physiolog-
ical functions by orexins, cellular signaling of orexins, and
pharmacology, which thus far has resulted in nearly 3,000
articles.

OVERVIEW OF OREXINS AND OREXIN RECEPTORS

Orexin Peptides

Native orexin peptides consist of the receptor agonists,
orexin-A (33 amino acids) and orexin-B (28 amino acids) (aka
hypocretin-1 and hypocretin-2) (Fig. 1), and their precursor,
preproorexin (PPO, aka preprohypocretin). The PPO gene
encodes one copy of each peptide; the gene structure has
apparently been generated with an intraexon duplication fol-
lowed by diversification (8). The PPO gene may have arisen by
circular permutation of an ancestral secretin gene in a procor-
date species [teleost fish are the lowest animal subclass that
express orexins and also show functional responses (8, 99, 182,
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408)], though the relationship to secretin has recently been
questioned (345). Sequences of orexin peptides are rather
conserved in mammalian species while the sequences diverge
in lower vertebrates (Fig. 1). Other neuropeptides have not
been shown to bind to orexin receptors (150, 307, 329).

Both mature peptides are amidated in their COOH terminus;
orexin-A, in addition, possesses two disulfide bridges and an
NH2-terminal glutamine cyclized to pyroglutamate (307) (Fig.
1). The enzymes taking part in the processing of PPO are not
known although predictions can been made. Several solution
NMR structures, suggesting partly helical structure for both
peptides, are available (188, 209, 344).

Orexin-A appears to be the more stable and more lipophilic
of the two mature peptides (183) and can be detected in the
CSF. In mice, orexin-A was found to be able to cross the
blood-brain barrier in both directions (183). In contrast, Bing-
ham et al. (35) found essentially no brain penetration of
intravenous orexin-A in mice or rats. Poor penetration of
intravenous orexin-A into the brain was also noted with orexin
replacement therapy in a dog with sporadic narcolepsy (109).
Some studies suggest that orexin-B levels are higher than those
of orexin-A in several brain regions (256, 257) as well as
selective enhancement of orexin-B levels in some conditions
(55, 56). However, orexin peptide determinations may be
uncertain because of possibly low specificity of orexin anti-
bodies (see Antibodies).

Orexin Receptors

Orexin receptors (Fig. 2) are class A GPCRs and comprise a
subgroup of peptide receptors with low homology (�30%) to
other GPCRs (201). Homology between the species orthologs
is rather high and there are no known pharmacological differ-
ences.

Orexin receptors have not been crystallized, and thus their
structures can only be surmised on the basis of computer model
predictions. There are numerous GPCR structures that can
be used as templates for homology modeling; these include
(rhod)opsin, �1 and �2 adrenoceptors, M2 muscarinic cholino-
ceptors, and � and � opioid, A2A adenosine, D3 dopamine, and
CXCR4 chemokine receptors, certain of which have been
solved in different conformations [(66, 128, 238, 390, 391);

reviewed in (70)]. Homology modeling and molecular dynam-
ics simulations have been performed for orexin receptors (135,
237, 356). OX1 and OX2 were modeled, the ligands were
“docked,” and the amino acids predicted to be important for
binding were replaced. These are useful approaches, but recep-
tor mutagenesis can lead to an incorrect conclusion because a
receptor’s structural integrity may be compromised in such
mutants. Domain exchange mutagenesis between OX1 and
OX2 receptors, an approach that may be less perturbing of
receptor structure, has also been done (286, 356). However,
this approach is also not free from effects on receptor structure,
as indicated by poor expression of some constructs (286, 287).
These studies identify the region around TM3 and TM4 as
most important for high-affinity OX1 receptor binding of the
antagonists SB-674042 and SB-334867. The NH2-terminal-
TM1 region also influences SB-674042 binding. Data from
domain exchange and point mutation studies do not fully agree.
Domain exchange studies infer that agonist selectivity is also
determined by the TM3-TM4 region (287, 356). Assessment of
GPCR structures with other techniques, such as NMR (67,
347), has not been applied to orexin receptors.

Orexin Receptor Variants and Mutants

Mouse OX2 receptor has been proposed to be expressed in
two variants (� and � isoforms) with different COOH termini
due to alternative splicing of the transcript (64). The splicing
may be subject to regulation in different tissues and brain
nuclei (63, 64). Some receptor sequence variants, such as 167
Gly/Ser, 265 Leu/Met, 279 Arg/Glu, 280 Gly/Ala, 281 Arg/
His, and 408 Ile/Val for OX1 and 10 Pro/Ser, 11 Pro/Thr, 193
Cys/Ser, 293 Ile/Val, 308 Val/Ile, and 401 Thr/Ile for OX2, are
found in humans (201, 276, 282) and may represent mutations
or polymorphisms. Correlation with some disorders (cluster
headache, depression, panic disorder) has been found for some
genotypes (OX1

Val408, OX2
Ile308) (14, 248, 289, 290) but cau-

sality remains to be shown. The canarc mutant narcoleptic
dogs harbor frameshift mutations in the OX2 gene, prematurely
truncating the receptor protein (218). Another OX2 mutation
found in a narcoleptic dog, Glu54Lys, does not truncate the
receptor or hinder the membrane expression but instead, seems
to abrogate orexin binding and receptor signaling (159). Some

Fig. 1. Orexin peptide sequences. Note that the Xenopus and zebrafish sequences are predicted. The peptides are COOH-terminally amidated (although this is
not verified for all species variants). The NH2-terminal glutamine of mammalian orexin-A is cyclized to pyroglutamate (marked *q) and two disulfide bridges,
as indicated in A, are present (not verified for nonmammalian variants). Amino acids are marked in different color code based on selected side-chain properties:
pure CH-containing (aliphatic and aromatic) in green, OH-containing in black with white lettering, S-containing in yellow, amide-containing in mauve, other
N-containing in blue with white lettering, and COOH-containing in red.
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receptor mutations have been experimentally introduced to
investigate receptor structure/pharmacology or signaling (see
above and under Cell Death).

OREXIN RECEPTOR LIGANDS

Agonists

Orexin-A and -B are usually considered equal ligands for
OX2 receptor but orexin-B is thought to be a 5- to 100-fold
weaker ligand than orexin-A at OX1 receptors. This view
originates from studies of binding and Ca2� elevation in
recombinant CHO cells (307), and in other heterologous ex-
pression systems, including CHO, neuro-2a, PC12 and BIM
cells by Ca2� elevation or phospholipase C (PLC) activation
(9, 151, 328, 346, 414). The finding provides a basis for using
orexin-A and orexin-B to distinguish between OX1 and OX2

receptors in native systems (201). However, even in defined,
recombinant expression systems, this distinction is not always
valid (Table 1). Certain such systems, e.g., CHO and HEK-293
cells, deviate with respect to the same response like Ca2�

elevation (288). The results are likely explained by “biased
agonism” (selective agonist trafficking of receptor responses;
185–187, 200). Differences between cell lines may result from
distinct signal transduction machineries. Also orexin receptor

heteromerization partners (see Interaction of orexin and endo-
cannabinoid systems) could impact this. The alanine-scanned
orexin peptides differentially activate Ca2� influx and release
(9), which suggests that orexin peptide-receptor interaction
may show biased agonism. A further implication of this is that
these two Ca2� responses may be regulated by different sig-
naling pathways. The finding that Ca2� elevation measured in
the same cells shows a different profile if cells are attached or
detached (Table 1) indicates that there may be detachment-
induced changes in the signaling cascades.

Some studies report orexin peptide mutagenesis. NH2-ter-
minal truncation of orexin-A successively reduces the potency
(and likely the binding affinity) at OX1 and OX2; however, the
extreme NH2 terminus has not been investigated (9, 74, 205,
206, 275). No data have been published regarding COOH-
terminal truncation of orexin-A while removal of the COOH-
terminal methionine from orexin-B eliminates its activity
(206). Orexin-A and orexin-B are highly homologous in this
region (Fig. 1), suggesting the central importance for peptide-
receptor interaction; however, the COOH-terminal amino acid
is not conserved. The COOH terminus of orexin-A or -B does
not allow additions (133; Putula J, Turunen PM, and Kukkonen
JP, unpublished observations). Studies using alanine scanning of

Fig. 2. Peptide sequences of the human orexin receptors
utilized in the studies of the author. Note that there are
a number of sequence variants known [see Orexin
Receptor Variants and Mutants]. Amino acids are
marked in different color code based on some of their
side-chain properties (as in Fig. 1): pure CH-containing
(aliphatic and aromatic) in green, OH-containing in
black with white lettering, S-containing in yellow,
amide-containing in mauve, other N-containing in blue
with white lettering, and COOH-containing in red.
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the truncated orexin-A peptides point out certain amino acids.
Truncation and alanine substitutions have a similar impact on both
OX1 and OX2, but the potency of the peptide to activate OX2

receptor is somewhat less affected (9, 275); this may be predicted,
based on the lower selectivity of OX2 between orexin-A and -B
(see above). Whether the disulfide bonds in orexin-A play a role
is not clear (205, 206). A truncated orexin-B, orexin-B6–28, has
equal or higher potency than orexin-B for OX1 and OX2 and some
substituted orexin-B6–28 analogs may have high selectivity for
OX2 (205). Ala11,DLeu15-orexin-B is another agonist with a re-
puted high selectivity for OX2 (16). However, in our studies the
selectivity of this ligand, assessed by Ca2� elevation in recombi-
nant CHO and HEK-293 cells, was less than 10-fold (288).

The agonist profiles of orexin-A and orexin-B or sometimes
also Ala11,DLeu15-orexin-B have been used to determine the
involvement of the OX1 or OX2 receptor in particular re-
sponses in native systems. As discussed above and in previous
studies (199, 201), one can question the use of agonists to
determine involvement of the orexin receptor subtypes since
data with recombinant cells suggest that biased agonism occurs
at orexin receptors. In native systems, multiple types of recep-
tors may contribute to the measured output, especially when
the responses involve complex neuronal circuitry.

Low-molecular-weight orexin receptor agonists are not
known. It has been proposed that the OX1-selective antagonist
SB-334867 sometimes shows weak agonistic behavior (28;
Putula J and Kukkonen JP, unpublished observations).

Antagonists

Orexin receptor antagonists have been and are commercially
developed as drug candidates as reviewed in several publica-
tions (69, 300, 314). OX1 receptor was first targeted with
SB-334867 (285); this ligand has been an important tool in
orexin research. Other OX1-selective ligands include SB-
408124, SB-410220, and SB-674042 (also as 3H-SB-674042)
(207). Most of the more recently reported ligands have been
OX2-selective or nonselective. A major hindrance for orexin
research is lack of commercial availability of other ligands than
SB-334867, SB-408124, TCS-OX2–29 [compound 29 of
(140)], and TCS 1102 [compound 18 of (29)].

Labeled Ligands

[125I]-labeled orexin-A and -B are the only commercially
available radioligands but are not well-suited for receptor

studies due to high filter binding, high-energy radiation, etc.
(199). Also, the agonistic nature of the ligands makes them
problematic; agonist radioligands may only detect the G pro-
tein-precoupled receptor population (“agonist high-affinity
site”), and in intact cells the agonistic effects (receptor activation
including possible desensitization and internalization) are not
favorable (200). Custom-made 3H-SB-674042, 3H-almorexant,
and 3H-EMPA have been used by pharmaceutical companies
(207, 235–237). Fluorescently labeled orexin-A has been used
in some studies (74, 96, 181), but their potencies/affinities have
not been reported. Orexin-B has been labeled with the toxin
saporin (orexin-B-saporin), which can be used to selectively
ablate orexin receptor-expressing neurons [see, e.g.,(115)]. It is
unclear whether only OX2-expressing neurons are eliminated.

CELLULAR SIGNALING OF OREXINS

Orexin responses are mediated by the two G protein-coupled
orexin receptors. A wide cellular response repertoire is seen in
different cell types, but even a single cell type can have
multiple responses (Fig. 3). One of the major challenges in
orexin research is the evaluation of the significance of various
responses in different contexts.

G Protein Coupling of Orexin Receptors

Many reviews indicate that OX1 receptors couple to Gq

proteins and that OX2 receptors couple to Gq and Gi/o family
members. However, no experimental evidence fully supports
these conclusions. First, it can be difficult to determine G
protein coupling of a GPCR, due to, for instance, the scarcity
of specific molecular tools, the difficulty of direct measure-
ments, and the need to disrupt the cellular milieu (200). The
only direct measurements of multiple G protein coupling of
orexin receptors have been by assessment of 32P-GTP-azido-
anilide-labeling combined with immunoprecipitation. The re-
sults reveal that OX2 receptors in human adrenal cortex acti-
vate Gi, Gs, and Gq proteins (181, 294). Mixed orexin receptor
populations in rat adrenal cortex or hypothalamus couple to Gi,
Go, Gs, and Gq (180) (Figs. 3 and 4A). In brain slices,
35S-GTP-labeling of orexin-activated G proteins also suggests
coupling to Gi/o family G proteins (30, 31). These are the only
direct evidence for G protein coupling; little can be concluded
from the results. The techniques, although powerful, require
disruption of the cellular structure before the receptor stimu-
lation, and they may thus disrupt the signaling complexes, etc.

Table 1. Orexin-A- and -B pharmacology with respect to different responses in our clone of human OX1-expressing CHO cells

Response and Method EC50-orexin-B/EC50-orexin-A: OX1 EC50-orexin-B/EC50-orexin-A: OX2 Reference No.

Ca2� measurement with attached cells 2.6 1.3 (288)
Ca2� measurement with detached cells 6.9 1.0 (9)
Arachidonic acid release with attached cells 3.3 Not measured (363)
Arachidonic acid release with detached cells 15 Not measured (365); Orexin-B data from Putula

J, Turunen PM, and Kukkonen
JP, unpublished observations

PLC assay with attached cells 14 Not measured (171)
PLD assay with attached cells 13 Not measured (171)
ERK phosphorylation with attached cells 18 Not measured (10)
cAMP response with detached cells in the absence of cholera

toxin (Gs activation) 1.6 Not measured (149)
cAMP response with detached cells in the presence of

cholera toxin (PKC� activation) 12 Not measured (149)

Review

C6 OREXINS/HYPOCRETINS ANNO 2012

AJP-Cell Physiol • doi:10.1152/ajpcell.00227.2012 • www.ajpcell.org

 at U
niversity of S

outh D
akota on F

ebruary 12, 2013
http://ajpcell.physiology.org/

D
ow

nloaded from
 

http://ajpcell.physiology.org/


Indirect measurements of receptor responses in cell lines or
ex vivo tissue samples have been interpreted to indicate cou-
pling of orexin receptors to certain G proteins. However, one
must be careful in drawing conclusions from such studies. For
example, an elevation or decrease in cellular cAMP levels does
not necessarily indicate coupling to Gs or Gi proteins, respec-
tively; adenylyl cyclases (ACs) that generate cAMP and phos-
phodiesterases that hydrolyze cAMP are regulated in many
ways (338). PLC activation does not necessarily reflect in-
volvement of Gq, as PLC isoforms can be regulated in other
ways, too (198). Use of inhibitors to infer signaling mecha-
nisms can also lead to erroneous conclusions. AC inhibitors
may be toxic at the concentrations needed for inhibition (10),
and so is the PLC inhibitor, U-73122 (348). In recombinant cell
systems, one must consider artifacts induced by clonal selec-
tion, receptor overexpression, and nonnative signaling environ-
ment.

Indirect measurements of OX1 receptor regulation of AC in
recombinant CHO cells indicate coupling to Gq, Gi, and Gs

proteins, but this could, in part, reflect artificial coupling from
receptor overexpression (149). Many studies show strong PLC

activation by orexin receptors based on PLC activity assays
(151, 168, 169, 179, 180, 228, 245, 294) and indirect evidence,
i.e., Ca2� release (151, 228). PLC-produced IP3 (Fig. 4A)
underlies Ca2� release in OX1-expressing CHO cells (90). This
may result from Gq ¡ PLC� coupling of the receptors but has
not been proven; other PLC isoforms may be involved. Indeed,
evidence exists for involvement of at least two different PLC
types in OX1 receptor signaling in CHO cells (168). Ca2�

elevation induced by orexin receptor activity also involves
PLC-independent Ca2� influx, likely via nonselective cation
channels (Fig. 4B). In recombinantly OX1-expressing HEK-
293 cells, results with chimeric Gs-based G proteins suggested
that the receptors couple to Gq/11 and G16, another Gq family
member (231). Heterologous expression of dominant-negative
G proteins has been used to determine orexin receptor coupling
in recombinant and native cells (292, 346). However, domi-
nant-negative G proteins likely produce less-specific receptor
blockade (200), which may explain the 	100% inhibition
observed if one sums the effects of each dominant-negative
construct alone (293, 346).

The only “selective” G protein inhibitor available, pertussis
toxin (PTx), which inactivates Gi/o proteins and blocks their
activation by GPCRs, has been used to block orexin signaling
(143, 149, 309, 372). However, inhibition of Gi/o might also
have an indirect effect on orexin signaling, and PTx may also
affect other cellular targets than Gi/o proteins [e.g., (239)].

In summary, the G protein coupling of orexin receptors is far
from clear, but based on the evidence available, both OX1 and
OX2 receptors are likely to couple to Gi/o, Gs, and Gq family G
proteins (Figs. 3 and 4A).

Orexin Receptor Coupling to Other Proteins

GPCRs can interact with proteins other than heterotrimeric
G proteins, but in many cases the functional significance of
such interaction remains elusive (298). Orexin receptors di-
rectly interact with dynein light chain Tctex-types 1 and 3
[(87); Fig. 3B], but the functional effect is unclear. Immuno-
precipitation revealed that the protein tyrosine phosphatase
SHP-2 interacts with activated OX1 receptors, an interaction
that may mediate cell death (see Cell Death). OX1 receptor
activation induces �-arrestin translocation, and �-arrestin may
contribute to ERK signaling (96, 251), effects akin to those
noted for many other GPCRs (291).

Cell Plasticity

Many GPCRs activate signaling cascades involved in the
regulation of cell growth, plasticity, survival, and death, for
instance MAPK/SAPK pathways (84, 123, 124). This may
occur via “direct” downstream activity cascades or by trans-
activation of tyrosine kinase receptors (84, 124, 322). Orexin
receptors activate ERK and p38 MAPK/SAPK cascades in
recombinant cells (10, 12, 139, 201, 346) and in some native
cells and cell lines (292, 321). Indirect evidence has been
obtained by inhibition of p38 or MEK1 (the kinase activating
ERK) (12, 320, 321, 333). The upstream activation mecha-
nisms of these cascades are largely unclear, but analysis in
OX1-expressing CHO cells suggests that Ras is upstream of
ERK activation and that it is probably regulated by protein
kinase C (PKC), phosphoinositide-3-kinase (PI3K), and Src
signaling (10). PI3K, a central cell survival signal, has also

Fig. 3. Overview of cellular responses to orexin stimulation. Some responses
have been omitted for the sake of clarity. A: examples of general responses.
B: some molecular mechanisms. The relationships between different outputs
measured are often not clear (see text and Figs. 4 and 5 for explanations). AC,
adenylyl cyclase; �-arr, �-arrestin; Dynlt, dynein light chain Tctex-types 1 and
3; see Glossary for other definitions.
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been implicated in other studies (126, 320, 327). Orexin
receptor signaling is involved in long-term potentiation (LTP)
in mouse hippocampal slices, a response that is blocked by
kinase inhibitors including the PI3K inhibitor wortmannin, the
MEK1 inhibitor PD98059, and the p38 inhibitor SB-203580.
As all the inhibitors fully block the response alone, there is
some doubt as to the specificity or cellular target of the
inhibition (320). Orexin-A stimulates (putatively via ERK)
AMPA receptor insertion on the cell surface in cocultures of rat
prefrontal cortex and striatum neurons; the same process may
trigger the long-term enhancement of AMPA currents within
the striatum in a slice preparation (323). In the rat ventral
tegmental area, orexin-A stimulates NMDA receptor currents
by enhanced NMDA receptor translocation to the plasma

membrane via a PKC-dependent pathway (40). In cultured rat
adrenocortical cells, the ERK pathway may mediate orexin-
stimulated cell division while p38 inhibits cell division (333).
In InR1-G9 glucagonoma cells, the PI3K pathway may medi-
ate suppression of glucagon expression and secretion (126).
Orexins are indispensable for postnatal development of brown
adipose tissue (BAT) (see Feeding and Metabolism).

Cell Death

Orexin receptor stimulation can induce cell death in recom-
binant CHO cells and in native colon carcinoma and neuro-
blastoma cells (11, 12, 301, 385, 387). In recombinant OX1-
expressing CHO cells, p38 seems to be responsible for orexin

Fig. 4. Some specific orexin signaling mechanisms. A: G protein signaling of orexin receptors and the putative targets. As described in the text, most of the
responses presented have been shown for orexin receptors, except the G�� signaling. Most of the signal cascades have targets in addition to those shown; for
instance, cAMP can act on EPAC, a guanine nucleotide exchange factor for Rap1, and NSCC. The pathways are also strongly simplified; e.g., AC activity and
cAMP levels are regulated in many additional ways. B: in neurons, postsynaptic depolarization is induced upon activation of NSCC and K� channels (putatively
Kir-type). Some possible mechanisms for Kir activation are depicted. Molecular pathways for NSCC activation are largely unknown. C: Ca2� influx in native
neurons and recombinant cells is obtained via activation of different nonselective cation channels of both the TRPC family and other types (“X”). In addition,
VGCC may be targeted (not shown). TRPC (or other NSCC)-mediated Na� influx probably most strongly leads to Na� influx; the reverse mode of NCX may
then mediate Ca2� influx (left). Whether the activation of NCX is a passive process or stimulated by orexin receptors (e.g., via PKC) is unclear (“?”). D: signaling
in the adrenal cortex. Orexin-activated cAMP ¡ PKA pathway underlies glucocorticoid release. Orexins may also induce enzymes required for steroid synthesis.
Orexin stimulation elevates cAMP putatively via G�s ¡ AC coupling. cAMP activates PKA, which phosphorylates targets, including hormone-sensitive lipase
(HSL), which liberates cholesterol for glucocorticoid synthesis, and cAMP response element-binding protein (CREB), which can mediate enzyme induction.
VGKC, voltage-gated K� channels; see Glossary for other definitions.
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receptor-promoted apoptotic cell death, characterized by
caspase activation, nuclear condensation, gene transcription,
and protein synthesis (12). Interestingly, the inhibition of
caspases does not block the cell death but rather changes the
profile of cell death by eliminating the need for gene transcrip-
tion (12).

Yet another mechanism for OX1-mediated cell death has
been suggested. Inhibition of tyrosine phosphatases with phe-
nyl arsine oxide (PAO) or Src-family kinases with PP2 fully
inhibited cell death in a recombinant CHO-S cell clone (386).
Expression of wild-type (wt) OX1 receptor in native mouse
embryonic fibroblasts but not in G�q- and G�11-deficient
(MEFQ11) cells induced cell death. The authors concluded that
Gq or G11 mediates the cell death perhaps via Src family
kinases but not via PLC, as PLC inhibition did not inhibit the
cell death. Both orexin receptors were discovered to express
novel motifs, immunoreceptor tyrosine-based inhibitory motif
(ITIM), IIYNFL, at the junction of TM7 and the COOH
terminus (386), and immunoreceptor tyrosine-based switch
motif (ITSM) in the TNYFIV-sequence, at the junction of
intracellular loop 1 and TM2 (91). Mutation of the tyrosine in
either motif in OX1 receptor (Y358F and Y83F, respectively)
blocked interaction of the activated receptor with the tyrosine
phosphatase SHP-2 and orexin-induced cell death. Cell death
was also blocked by dominant-negative SHP-2 or the SHP
inhibitor NSC-87877. Thus, it was suggested that these motifs
are phosphorylated by a Src family kinase at Tyr358 and Tyr83,
respectively, at which SHP-2 would bind and induce cell death.

Those results are of great interest but there are some prob-
lems with their interpretation. GPCRs contain a highly con-
served TM7 NPxxY-motif, which is essential for receptor
stability [see, e.g., (98, 173)]; in orexin receptors the tyrosine
is the same as that in the postulated ITIM motif. Different
GPCRs are affected in different ways by substitutions in the
NPxxY-motif, in terms of impact on functional activity and
trafficking. In addition, substitution of different amino acids for
Tyr leads to different phenotypes [(173) and references
therein]. Perhaps the structural changes in the OX1-Y358F
receptor perturb its proper expression and/or signaling. Such
effects could explain the apparently contradictory finding that
the mutation abolishes Ca2� signaling by the receptor and
drastically reduces high-affinity [125I]-labeled orexin-A bind-
ing (387), although Y358 phosphorylation should be down-
stream of G protein activation, and, as we know from our
experiments in CHO cells, PLC activation by OX1 receptors
does not require Src activity (10; Ekholm M and Kukkonen JP,
unpublished observations). By contrast, Y83F only inhibits
cell death but not receptor binding or Ca2� signaling. In
addition, if the two tyrosine phosphorylation sites (ITIM and
ITSM) were independent, as the authors suggest, mutations
of either one (Y83F and Y358F) should not fully block
tyrosine phosphorylation of OX1. Thus, the sole Src-
phosphorylation and SHP-2-binding site of the OX1 receptor
may reside in the ITSM sequence assuming that it (TNYFIV)
is accessible for phosphorylation; a phosphopeptide analysis
of OX1 is needed.

Different signal pathways can induce cell death. We identi-
fied the p38 MAPK/SAPK pathway in CHO cell clones (12),
whereas others identified SHP-2 as a central player (91, 386)
(Fig. 5). These results, as such, are not mutually exclusive, and
the outcomes of inhibition of SHP-2 and p38 have not been

tested in the same system; while we have used the classical
CHO-K1 cells (12), suspension-adapted CHO-S subclone was
used in other studies (91, 386). The signal pathways are not
known in the native cells or cell lines where programmed cell
death is also seen (301, 385).

Does orexin-induced cell death have a physiological conse-
quence? There is no direct knowledge of this. Despite the fact
that the primary signal transduction cascades identified in
orexin-mediated cell death are activated in minute-hour scale
(12, 301, 386), orexin-induced cell death seems to require a
clearly longer exposure time (several hours-days), and, in the
lack of good methods to measure physiological orexin levels
(see Antibodies), we do not know whether such occurs in the
body. However, it is not known whether a shorter “priming”
exposure or repetitive exposures to orexins could lead to cell death
in the long run. No healthy native cells, which express orexin
receptors, seem to have been exposed to orexins for longer time
periods, with a notable exception of C3H10T1/2 mesenchymal
stem cells and HIB1b preadipocytes, which differentiate towards
brown adipocytes upon this treatment. Orexin receptors are ex-
pressed in some cancer cell types, where they can induce cell
death (301, 385), and thus orexin receptor activation could be
considered interesting from the perspective of cancer therapy.
However, it is difficult to predict the responses of healthy tissues
on long-term orexin receptor activation, if such was accomplished
by exogenous drugs.

Recently, orexins have been shown to protect immortalized
hypothalamic neurons against H2O2 toxicity (54). ERK activa-
tion is also suggested to be antiapoptotic in OX1-expressing
CHO cells although cell death via the p38 pathway becomes
dominant in the long run (12).

Ion Fluxes in Neurons and Other Cell Types

Orexins are strongly neuroexcitatory, as shown in the initial
study (78) and verified in a large number of subsequent studies
on neurons from different brain regions, mainly by the use of

Fig. 5. Comparison of the orexin-mediated cell death pathways determined in
the independent studies of two research groups. FCS, fetal calf serum; p38, a
MAPK/SAPK; see Glossary for other definitions.
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electrophysiological techniques on ex vivo slices. The excit-
atory action of orexins has been ascribed both to pre- and
postsynaptic mechanisms, i.e., enhanced transmitter release
and facilitation of depolarization, respectively. The latter have
been more frequently reported and investigated in more detail.
Two classical mechanisms seem to contribute to the postsyn-
aptic depolarization, namely inhibition of K� channels and
activation of nonselective cation channels (Fig. 4B). The pre-
synaptic and postsynaptic effects can be distinguished by
synaptic isolation protocols [tetrodotoxin (TTx), low Ca2�-
high Mg2�] and measurements of synaptic currents.

Inhibition of K� channels is indicated when depolarization
is accompanied by an increase in input resistance (reduction in
membrane conductance); the channel types involved can be
identified based on current-voltage (I-V) curves, ion manipu-
lations, etc. Inhibition of K� channels by orexins occurs in
many brain nuclei within cerebrum, diencephalon, and brain
stem (23, 27, 37, 47, 83, 117, 118, 144, 155, 158, 160, 167,
195, 261, 392, 406, 407, 410, 411). The signal transduction
mechanisms or specific channel identities have generally not
been investigated but in some cases the responses are insensi-
tive to PTx (144) and mediated by PKC (407, 411), suggestive
of a Gq ¡ PLC� ¡ PKC pathway. Inward rectifier K� (Kir)
channels may be orexin targets (Fig. 4B). Kir channels of the
subfamily 3 (Kir3 aka GIRK channels) are targets for many
inputs from GPCRs; for instance, the PLC pathway may inhibit
the channels by depletion of PIP2 as well as by activation of
PKC via DAG (229, 304). Other Kir subfamilies can also be
targeted by GPCR signaling (138, 395). Kir3.1/3.2 (GIRK1/2)
channels are inhibited in recombinant HEK-293 cells by orexin
receptor activation via a PTx-insensitive pathway (143).

Activation of cation influx is suggested by a decrease in
input resistance. For orexins, this has been seen in various
regions of cerebrum, diencephalon, and brain stem (53, 94,
158, 160, 220, 392, 393, 405, 406). An obvious candidate for
these responses is nonselective cation channels; some studies
suggest their involvement (Fig. 4B). Na�/Ca2�-exchanger
(NCX), an electrogenic exchanger carrying 3 Na� for 1 Ca2�,
has also been implicated, based on blockade of the current by
Ni2� or KB-R7943 (3, 51, 94, 392, 393, 410). NCX can be
active in normal (Na� in, Ca2� out) and reverse mode (Na�

out, Ca2� in) and thus may depolarize or hyperpolarize cells.
However, the conclusions are not always straightforward. Fully
reliable I-V curves are difficult to obtain in native neurons due
to space-clamp problems, and pharmacological inhibitors are
not highly selective. For instance, KB-R7943 is often used at
concentrations that inhibit both modes of NCX in addition to
ion channels (166); Ni2� is even less selective. Intracellular
signal pathways that trigger orexin-mediated cation fluxes have
not been investigated in neurons.

Studies in recombinant systems may support the findings in
neurons. OX1 receptor stimulation in CHO cells activates a
receptor-operated Ca2� influx pathway (208, 228, 363). TRPC
family channels may mediate at least part of the current (208)
(Fig. 4C). TRPC channels also contribute to orexin responses
in OX1-expressing HEK-293 cells and IMR-32 neuroblastoma
cells (274, 280). NCX seems to be take part in the response in
recombinant cells (223), making conclusions more difficult.
TRPC channels likely conduct more Na� than Ca2� under
physiological conditions (377), and one of the proposed re-
sponse pathways of orexins involves TRPC-mediated primary

Na� influx and secondary Ca2� influx via reversely working
NCX (223) (Fig. 4C). The activation mechanism of nonselec-
tive cation channels is unclear, but the phospholipase A2

(PLA2) pathway is a likely candidate in OX1-expressing CHO
cells (363, 364).

Ca2� measurements have sometimes been made in neurons
[e.g., (164, 192, 193, 204, 358, 367, 368, 370, 371)]. PKC-
mediated activation of L-type (or N-type) voltage-gated Ca2�

channels (VGCC) has been implicated in some cases (192, 193,
367, 370). Signaling to L- and N-type channels has been
observed in some nonneuronal cells (334, 398).

TTx often eliminates action potential-dependent transmitter
release and thus also contribution from a long-range upstream
network. A direct presynaptic site of action has been suggested
on the basis of results of TTx-insensitive enhancement of
inhibitory or excitatory postsynaptic current (IPSC or EPSC)
frequency upon orexin stimulation (77, 103, 331). Also some
TTx-sensitive responses may be presynaptic: orexins may act
by enhancing action potential-dependent responses and not on
their own. Since TTx does not block retrograde synaptic
transmission by, e.g., endocannabinoids (142), care is needed
in drawing conclusions regarding the site of orexin action (pre-
or postsynaptic).

Lipid Signals

GPCRs can couple to multiple lipid signaling systems via
phospholipases (198). Orexin receptors activate PLC (228,
245, 294), and this signaling has physiological significance,
e.g., in neuronal excitation (see Ion Fluxes in Neurons and
Other Cell Types). Our studies of lipid signaling pathways
activated by recombinant human OX1 receptor-expressing
CHO cells have revealed coupling to several PLC signals, PLD
and PLA2 (Figs. 3B and 6). Thus, orexin receptors may be
extremely “plastic” in their ability to couple to phospholipase
cascades, although for many of the responses the physiological
role is unknown.

Phospholipase C. PLC hydrolyzes phosphoinositides (PI,
PIP, PIP2) to diacylglycerol (DAG) and IP3 (if PIP2 is the
substrate) (Figs. 4A and 6). The PLC family is divided into �,
�, �, ε, 
, and � subfamilies (198). PLC� is regulated by
GPCRs via G�q/11 (or more weakly via G��), but PLC
 and
PLC� can also be regulated by G��, and the other PLC
isoforms are targeted by GPCRs via, e.g., Ca2�, phosphoryla-
tion or Ras or Rho family G proteins (198). PLCs require Ca2�

for activity, but Ca2� is not a major stimulant for isoforms
other than PLC� and PLC�. Roles for different PLC isoforms
are difficult to separate as there are no selective inhibitors and
RNAi can be difficult due to multiple isoforms. The most used
inhibitor, U-73122, is thought to inhibit all PLC isoforms,
though this has not been scrutinized. It also has serious off-
target effects, including cellular toxicity (348), and it may be
ineffective, due to, for instance, instability.

Both orexin receptors activate PLC, as has been shown by
direct measurements in recombinant cell lines, including CHO
(168, 228; unpublished observations), HEK-293 (286),
neuro-2a (151) and PC12 cells (151; Putula J, Jäntti M, and
Kukkonen JP, unpublished observations) and by using
U-73122 or Ca2� measurements in the absence of extracellular
Ca2�. Direct measurements have seldom been done on native
cells but, IP3 generation upon orexin receptor activation has
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been shown in human pheochromocytomas and rat adrenal
cortex and hypothalamus (180, 245).

It is widely assumed that orexin receptors couple to PLC�
via G�q but no direct evidence has shown this. In CHO cells,
orexin receptors couple to PLC stimulation very effectively,
much better than another Gq-coupled receptor, M1 muscarinic
receptor, suggesting that several PLC isoforms could be in-
volved (169). Additional evidence for this has been obtained
by analyzing the products of PLC in these cells (168), The
results suggest that two different PLC activities act in concert
downstream of orexin receptor signaling, one hydrolyzing PI
or PIP and the other PIP2. Thus far these PLC activities have
not been molecularly identified. Ca2� influx also seems to
regulate PLC activities in CHO cells in an unusual manner
(169, 228).

PLC signaling is generally thought to lead to Ca2� release
via IP3 receptors on the endoplasmic reticulum and to activa-
tion of PKC by DAG. Other proteins are also targeted by DAG
(198), including protein kinase D (PKD), which has been
identified in OX1 receptor signaling in HEK-293 cells (281).
PKC mediates a number of orexin receptor responses in native
neurons and recombinant cells (see above). Involvement of
PLC in orexin signaling has been proposed based on use of the
inhibitor D609 (189, 367, 394, 407). D609 (318) is a putative
inhibitor of bacterial and protozoan phosphatidylcholine-spe-
cific PLC (PC-PLC), for which no mammalian counterpart has
been isolated (198). D609 also inhibits mammalian sphingo-
myelin synthase (226). Might a PC-PLC or sphingomyelin
synthase be involved in orexin receptor signaling? This is an
interesting possibility but, given D609’s multiple effects, it
should not be used in signaling studies until its inhibitory
profile is fully characterized.

Phospholipase D. PLD family enzymes PLD1 and PLD2
hydrolyze phosphatidylcholine to choline and phosphatidic
acid (Fig. 6). Phosphatidic acid is an intracellular messenger
with a number of protein targets, and it can also be hydrolyzed
by phosphatidic acid phosphohydrolase activity to DAG (Fig.
6) (198). We have recently shown that OX1 receptor stimula-
tion activates PLD1 in CHO cells (Fig. 6) (168, 171). Evidence
is lacking from other cell types, but since we observe a strong
and potent response in CHO cells, we speculate that this is
likely to take place. Activation of PLD occurs via a novel PKC
isoform, most likely PKC�, but without requirement of PLC-
dependent DAG generation (171). The targets of PLD in orexin
signaling are unknown.

Phospholipase A2. PLA2 refers to a large family of enzymes
(80). Although well known for their role in liberation of arachi-
donic acid from the sn2-position of phospholipids for eicosanoid
production (Fig. 6), very few PLA2 isoforms are specific for
arachidonic acid or have only sn2-hydrolysis activity (198).

We find that OX1 receptor stimulation in recombinant CHO
cells activates arachidonic acid release by cPLA2 [cytosolic
(Ca2�-sensitive) PLA2, likely cPLA2�] in CHO cells (Fig. 6)
(363, 364). The cPLA2 enzyme activity is important for orexin
receptor-operated Ca2� influx in these cells (363, 364). Ara-
chidonic acid is also released upon orexin receptor stimulation
in OX1-expressing HEK-293 cells, and this may contribute to
Ca2� oscillations (280). However, it is unclear whether the
release occurs via PLA2 or another pathway (364).

Interaction of orexin and endocannabinoid systems. Endo-
cannabinoids are arachidonic acid-containing messengers pro-

duced by (phospho)lipase action. The originally identified, and
possibly most important, endocannabinoids are 2-arachidonoyl-
glycerol (2-AG) and N-arachidonoylethanolamine (anandamide)
(175). Endocannabinoids are ligands for the GPCRs CB1 and
CB2. CB1 is widely expressed in CNS neurons (175). Endo-
cannabinoids in the CNS regulate appetite, nociception, mem-
ory, and mood (175). Endocannabinoids are thought to be
released postsynaptically and act on presynaptic, inhibitory
CB1 receptors by a process termed retrograde synaptic trans-
mission (175) (Fig. 7). The system may act in both a homo-
synaptic and a heterosynaptic manner. Presynaptic inhibition
likely occurs by Gi family protein-derived G��-mediated in-
hibition of VGCC and/or activation of Kir channels [see, e.g.,
(156, 175, 230, 366)].

Diacylglycerol lipase (DAGL) removes the sn1-fatty acid
from DAG � likely produced by PLC � generating 2-AG
(198). The regulation of DAGL is not clear, but it may be
dually activated in Gq-coupled GPCR signaling by substrate
(DAG) availability and via Ca2� or PKC (198). Intracellularly

Fig. 6. Lipid signaling pathways of orexin receptors. Membrane phospholipids
are shown by circles, less active lipid metabolites (in signaling) as ovals, more
active ones as stars, and enzymes as rectangles. FFA, free fatty acid; LPA,
lysophosphatidic acid; LPC, lysophosphatidylcholine; MAG, monoacylglyc-
erol (like 2-AG); MAGL, monoacylglycerol lipase; PA, phosphatidic acid;
PAP, phosphatidic acid phosphohydrolase; PC, phosphatidylcholine; PI, PIP,
and PIP2, phosphatidylinostol, phosphatidylinositol-4-phosphate, and phospha-
tidylinositol-4,5-bisphosphate, respectively. The pathways are simplified and
lack many possible metabolic connections. FFAs are considered more active as
a messengers (sharper stars) when they are polyunsaturated, such as arachi-
donic acid. We find two apparently different PLC activities in human OX1

receptor-expressing CHO cells (168), here denoted PLCx and PLCy, because
of the lack of knowledge of their molecular identity. IP1 and IP2, inositol
mono- and bisphosphate(s), respectively.
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produced 2-AG is released to the extracellular space via an
unknown mechanism and is inactivated by hydrolysis to ara-
chidonic acid and glycerol by a number of enzymes (175, 313).

There is an apparent overlap between the putative functions
of endocannabinoids and orexins, especially in the regulation
of appetite and analgesia (57, 175, 299, 307). Overlap is also
seen in their neuroanatomic distribution, but, at least in part
due to problems related to orexin antibodies (see Antibodies),
direct synaptic connections are not well defined. Some func-
tional studies indicate orexin-endocannabinoid interaction, for
example, in the stimulation of appetite (71): intracerebroven-
tricular orexin-A-induced feeding in rats is abolished by CB1

receptor blockade with rimonabant. Some analgesic effects of
orexins occur via ventrolateral periaqueductal gray matter (18),
a site where orexin-A (presynaptically) inhibits GABAergic
signaling, apparently via OX1 receptor stimulation of 2-AG
generation and action on CB1 receptors (142, 242, 283). In the
dorsal raphé, inhibition by orexin-B of the glutamate release
occurs via 2-AG-mediated CB1 receptor activation (130). Con-
versely, stimulation of upstream cannabinoid systems inhibits
excitatory glutamatergic drive to orexinergic neurons in the
lateral hypothalamus (157). CB2 receptors are also expressed
in the CNS microglia, but whether orexins have a role in the

regulation of these cells via endocannabinoids, or by other
means, is unknown.

Studies with heterologous coexpression have suggested that
OX1 and CB1 receptors form heteromers (dimers or oligomers)
(93, 139, 374). GPCRs can make heteromeric complexes, at
least upon overexpression [reviewed in (36, 302)], and CB1

receptors may interact with dopamine D2, � opioid, and AT1

angiotensin II receptors (241, 296, 303). FRET (Förster/fluo-
rescence resonance energy transfer) studies have presented
direct evidence for the existence of OX1-CB1 receptor com-
plexes (374). As a suggested consequence, OX1 signaling to
ERK was potentiated 100-fold in CHO cells; this potentiation
was inhibited by blocking CB1 receptors. In contrast, CB1

signaling to ERK and OX1 signaling to PLC were unaffected
by receptor coexpression (139). It has also been suggested that
OX1 receptor trafficking is altered by oligomerization (93).
The studies thus suggest a direct molecular interaction between
OX1 and CB1 receptors, but there are some possible pitfalls.
For example, most, if not all, of the findings in the coexpres-
sion systems might result from orexin receptor-stimulated
production of endocannabinoid, which act on CB1 receptors, a
possibility not rigorously tested. Indeed, we have found that
OX1 receptor stimulation in CHO cells strongly activates

Fig. 7. Synaptic 2-AG in orexin signaling. Orexins (yellow triangles) released upon action potential activate postsynaptic orexin receptors. Activity of these
receptors leads to PLC- and DAGL-dependent 2-AG production, which can act in a paracrine and autocrine manner. Similar scheme applies to other “stimulatory”
receptor signaling. FFA, free fatty acid; see Glossary for other definitions.
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DAGL and releases 2-AG, which is able to activate CB1

receptors in neighboring cells (364). DAGL-dependent 2-AG
release also occurs in OX1-expressing HEK-293 and neuro-2a
cells (364). Pharmacological analysis suggests a similar con-
cept for synaptic signaling (130, 142). If orexin receptor
activity can do this in a paracrine fashion, the same may also
occur in an autocrine manner. Future studies should assess this
possibility.

Orexins thus show substantial versatility in their cellular
signaling (Fig. 3), but how these signaling events link to
functional responses is poorly understood. Research on signal
transduction by orexin receptors may help to answer general
questions regarding GPCR signaling pathways and the cou-
pling to distinct signaling mechanisms in different tissues.

TOOLS AVAILABLE

Receptor Ligands

Numerous small molecule orexin receptor antagonists have
been reported but very few are commercially available. The
known orexin receptor agonists, on the other hand, are solely
based on the native orexin peptides (see above); this also
includes the commercially available radioligands (see OREXIN

RECEPTOR LIGANDS above).

Antibodies

I have recently noted problems associated with the anti-
bodies against orexin receptors (199) that lead me to question
results with any of them unless receptor expression is indepen-
dently verified (e.g., by mRNA, functional responses, or
knockdown). Cross-reactivity with other antigens seems to
occur with anti-orexin peptide antibodies, such as ones used in
radioimmunoassay (RIA) or enzyme-linked immunosorbent
assay (ELISA) kits (199). I thus seriously question results of
orexin determinations in plasma and CSF and urge caution in
immunohistochemistry (IHC) studies.

Transgenic Animal Models

Conventional knockouts of orexin peptides (PPO-KO) and
orexin receptors [OX1-KO, OX2-KO, and the double-knockout
(DKO)] in mice are available, as also is a conditionally restor-
able OX2-KO (Table 2). An OX2-ablation phenotype is found
in familial narcoleptic canines (218).

The proximal (�3.2 kb) PPO promoter (PPO-pro) directs
expression of genes to orexinergic neurons of mice/rats (306)
but may not have all the regulatory properties of the native
PPO promoter. PPO-pro has been widely used to express
proteins in orexinergic neurons (Tables 2 and 3). A mouse with
ectopic PPO overexpression has also been produced (250).

The orexinergic system has also been subjected to viral
manipulation (Table 3). A number of other native or transgenic
mutants—not directly affecting orexinergic neurons—have
been utilized in orexin receptor studies [see, e.g., (13, 112, 224,
384)].

The findings obtained with the transgenic and other animal
models (Tables 2 and 3) are described in other sections of this
review.

Medical Use

While the very first indication for orexin receptor antago-
nists may have been appetite suppression, drug development

has recently focused on hypnotics. Blockade of OX1 with
SB-334867 or SB-408124 in rats and OX1-KO in mice only
weakly modulates wakefulness and sleep [e.g., (86, 165, 249,
330)]. Knockout of both receptor subtypes is required for the
classical narcoleptic phenotype (174, 249). In contrast, elimi-
nation of OX2 induces a narcoleptic phenotype in dogs (218).
See also Regulation of Wakefulness and Sleep and Table 2 for
the full details of genetic evidence. In humans, the situation is
not clear. OX2-selective and nonselective antagonists have
been developed, some of which are in phase II or III trials (69,
300). Almost no results of these studies have been published.
Recently, the dual orexin receptor blocker (DORA), almorex-
ant, failed in phase III trials; we may thank this unfortunate
incident for the fact that some results of the human studies with
almorexant have been presented. The grounds for the with-
drawal of almorexant from further development have not been
reported, but its long half-life (145, 146) is not advantageous.
Almorexant and another DORA, SB-649868, are effective
inducers of sleep in a number species including humans (33,
44, 147, 148). Whether inhibition of both orexin receptor
subtypes or OX2 only is more advantageous has been investi-
gated in rat; unfortunately, the results seem contradictory (86,
258). Suvorexant (MK-4305) may be the only DORA currently
in phase III trials. Suvorexant is an effective sleep inducer and
maintainer in rats, dogs, and rhesus monkeys (383). This year,
Merck has announced the results of two phase III studies
(http://www.merck.com/newsroom/news-release-archive/
research-and-development/2012_0613.html), suggesting that
this compound is effective also in long-term treatment in
humans and well-tolerated during the treatment and with re-
spect to discontinuation. According to the press release, results
of two more phase III trials are going to be published this year
and a New Drug Application filed in the US. Suvorexant is thus
close to becoming the first orexin receptor antagonist in the
clinic for insomnia. This will also supply very interesting
information on the orexin functions in humans and possibly
pave the way for additional indications.

Narcolepsy (and perhaps other sleep/wakefulness disorders)
is the most obvious use of orexin receptor agonists. Because
low-molecular-weight agonists for orexin receptors are not
known, orexin-A itself has been used in some attempts at
orexin replacement therapy. In a sporadically narcoleptic dog,
only very high intravenous doses produced mild amelioration
of the symptoms (109). As discussed above (Orexin Peptides),
blood-brain barrier penetration of orexin-A may be limited.
Intranasal administration of orexin-A does not appear to be a
promising approach either (19). Perhaps the absence of orexins
in narcolepsy affects the levels of orexin receptor expression
and thereby impact on the outcome of the studies. Healthy
subjects thus need to be tested as well. Nevertheless, a peptide
such as orexin-A lacks optimal ADME (absorption, distribu-
tion, metabolism, excretion) properties of a drug, and thus, a
small molecule agonist would be preferable. Another possible
therapeutic use of orexin receptor agonists would be cancer
since orexin receptor stimulation has been suggested to induce
programmed cell death in some cancer and other cell types (see
Cell Death).

The absence of published studies on orexin receptor antag-
onists and the lack of agonistic ligands make it difficult to
predict, on one hand, possible shortcomings (lack of effect,
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side-effects, etc.), and on the other, possible novel applications
for these ligands.

PHYSIOLOGICAL FUNCTIONS IN THE CNS

Orexinergic Neurons

Molecular and regulatory signatures. The anatomy of orex-
inergic neurons and projections has been mapped in numerous
mammalian and nonmammalian species, in greatest detail in
mice and rats, but there is little information for humans.
However, the similarity between other species may allow some
extrapolation of the knowledge.

Orexinergic neuron cell bodies are found solely in the lateral
hypothalamic area and nearby regions. They do not form a
distinct nucleus but are mixed with other neurons, such as
melanin-concentrating hormone (MCH)-expressing neurons
(201). The number of orexin neurons in humans is estimated to
be �80,000 (105, 106, 350, 351). Prodynorphin, secretogranin
II, neuronal activity-regulated pentraxin (NARP), and noci-
ceptin/orphanin FQ (26, 39, 68, 72, 120, 121, 240, 297) are
likely also expressed in all of the orexinergic cells, but, unlike
orexins, those peptides/proteins are also expressed in other
brain areas. Galanin and glutamate may be cotransmitters in a
subpopulation of orexinergic neurons (1, 154, 161, 163, 247,
316, 355). The role of the other putative transmitters in the
functions of orexinergic neurons is rather unclear. Glutamater-
gic transmission of orexinergic neurons may be important for
excitation of histaminergic neurons (316), and dynorphins may
impact orexin effects both positively and negatively (214).
However, the narcoleptic phenotype of orexinergic neurons is
the same in mice that only lack orexins (PPO-ko mice) and that
lack the entire orexinergic neuron population (PPO-pro-ataxin-3
mice).

Orexin neurons seem to be regulated by many transmitter
systems, as determined by IHC, in situ hybridization, tracing,
and functional studies. These putative regulatory inputs are
depicted in Fig. 8; however, the figure is both incomplete and
speculative, especially with respect to the source of transmit-
ters and the physiological significance; expression of a receptor
or response to an exogenous ligand need not imply a physio-
logical action. In addition, IHC studies may suffer from issues
related to specificity of antibodies or antagonists, and func-

tional studies of problems with synaptic block [see Interaction
of orexin and endocannabinoid systems and discussion in
(199)].

Orexinergic neurons may also be regulated by blood com-
ponents, like glucose (49, 125, 378, 380, 402) and dietary
amino acids (177), and paracrine messengers, like endocan-
nabinoids (see Interaction of orexin and endocannabinoid
systems) and adenosine. Whether leptin directly acts on orex-
inergic neurons or upstream of them is disputed (154, 161, 210,
211, 224, 402). Glucose hyperpolarizes and inhibits orexiner-
gic neurons via opening of an unidentified K� channel (50,
176). Orexin neuron activity (measured by c-fos expression)
and PPO mRNA production increase in fasting and glucopenia
(45, 57, 81, 222, 259, 307), probably via the forkhead box
transcription factor Foxa2 (325). Insulin inhibits this cascade
(325). Dietary amino acids depolarize and activate orexinergic
neurons by closure of tolbutamide-sensitive KATP channels and
Na� influx via amino acid transporters (177).

Upstream and downstream projections. PPO-IHC was orig-
inally used to map the downstream projections of orexiner-
gic neurons (265, 283). In situ hybridization of orexin
receptor mRNA provided additional evidence (242, 357).
Caution is required in assessing studies with orexin receptor
antibodies as sole evidence for receptor expression (see
Antibodies). Orexinergic neurons project to well-defined
CNS areas [(242, 265, 283, 357); reviewed in (201)]. Down-
stream target transmitter systems are shown in Fig. 8.
Orexinergic neurons terminate not only on dendrites (or cell
bodies) but also on axon terminals; thus the anatomical
mapping may be partly misleading. Also, the production of
endocannabinoids in response to orexin receptor activity
may spread the signal in the target nucleus (see Interaction
of orexin and endocannabinoid systems).

Antero- and retrograde tracing with injected biotinylated
dextrans (97, 137, 409), Diamine Yellow (368), Fluorogold
(97), cholera toxin subunit b (247, 409) or pseudorabies virus
(362) or transgenic expression of TTC-GFP (308) to and from
orexin neurons have also been performed. Each technique has
its own advantages and disadvantages. Orexinergic neuron-
directed expression of the tracer may be advantageous, since
the region (e.g., lateral hypothalamus) contains other types of

Table 3. Viral targeting of the orexin system

Construct Use (when not obvious) Reported Use Results Reference No.

PPO-pro-
channelrhodopsin-2
lentivirus

Expression of the light-activated
nonspecific cation channel
channelrhodopsin-2 under the
proximal PPO promoter

Selective optogenic stimulation
of orexinergic neurons upon
injection in lateral
hypothalamus

- Light stimulation induces awaking in
sleeping mice

- Activation of histaminergic neurons
in mouse slice preparations is
driven by glutamate released from
orexinergic neurons

(4, 316)

CMV-pro-PPO adeno-
associated virus

General expression of PPO
under the CMV promoter

Orexin replacement in PPO-
ataxin-3 mice

- Injection in lateral hypothalamus or
zone incerta in PPO-ataxin-3 mice
blocks cataplexy

(219)

MCH-pro-PPO adeno-
associated virus

Expression of PPO under the
proximal MCH promoter

Orexin replacement in PPO-
ataxin-3 mice

- No effect on the sleep/wakefulness
phenotype of PPO-ataxin-3 mice

(219)

Orexin-lentivirus Expression of orexin (?) under
which promoter?

Orexin overexpression - Stimulation of mesenchymal
C3H10T1/2 cell differentiation to
brown adipocytes

(321)

OX1-shRNA-lentivirus Expression of shRNA against
the mouse OX1 receptor

Knockdown of OX1 - Block of orexin-A-stimulated HIB1
brown preadipocyte differentiation

(321)

See Table 2 for viruses used in connection with transgenic animals.
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neurons, and thus the possible tracer injection results must be
verified by reverse tracing. On the other hand, the orexinergic
neuron-directed tracer may suffer from other problems (409). It
is thus best if results from using these techniques are combined
with results of peptide and receptor IHC and mRNA data. In
general, such results are in agreement (308, 409).

The findings from such studies suggest that orexinergic
neurons have long-range reciprocal connections (with, e.g.,
prefrontal cortex, bed nucleus of stria terminalis, nucleus
accumbens nucleus shell, amygdaloid regions, lateral and me-
dial septal nuclei, and dorsal raphé nucleus) and similar ones
within the hypothalamus (lateral and medial preoptic area,
paraventricular hypothalamus, anterior hypothalamic area, ar-
cuate nucleus, and dorso- and ventromedial nuclei) (242, 265,
283, 308, 357, 409). Orexinergic neurons may also project to
other orexinergic neurons, indicating axon collateral-mediated
positive or negative autoregulation (154, 214, 404). It is un-
clear whether the stimulation by orexin of orexinergic neurons
occurs directly or by presynaptic facilitation of glutamate

release (212, 404). Injection of orexin-B-saporin in the lateral
hypothalamus induces death of orexin and MCH neurons but
not proopiomelanocortin ones (115), suggesting that orexin
receptor expression mediates the uptake and thus that orexin
receptors are expressed on orexinergic neurons. Negative feed-
back may be achieved by 1) direct and indirect effects of dynor-
phins released from orexinergic neurons (214), via 2) stimula-
tion by orexins of MCH neuron activity in the lateral hypo-
thalamus followed by indirect inhibition of orexinergic neurons
by MCH signaling (295, 369), or 3) by endocannabinoid
actions (see Interaction of orexin and endocannabinoid sys-
tems).

Functional division. Subpopulations of orexinergic neurons
with specific functions have not been rigorously identified.
Perifornical/dorsomedial hypothalamic neurons may regulate
appetite and sleep/wakefulness while lateral hypothalamic neu-
rons may influence reward (134, 335, 368, 409). Based on
morphology and their regulation, mouse orexinergic neurons
can be divided into two distinct populations (317).

Fig. 8. Signaling and regulatory properties of the lateral hypothalamic orexinergic neurons. Top part shows the transmitter-receptor systems that can regulate
orexinergic neurons (as determined from tracking studies and functional responses of orexinergic neurons). For most of the regulators depicted, the physiological
significance is not known. In some cases, information from the tracing and functional studies is combined. Red boxes with black outline and text indicate
inhibition, and green stars with white outline and white text indicate stimulation (electrical stimulation, Ca2� elevation) of orexinergic neurons. Note that the
Cl� channel receptors (GABAA and glycin receptors) are stimulatory in early development. References are as follows: 1, 2, 24, 46, 59, 92, 102, 108, 114, 116,
137, 152, 154, 178, 211, 214–216, 240, 262, 308, 317, 349, 358, 359, 384, 389, 396, 397, 402, and 403. Bottom part shows connections of orexinergic neurons
to other transmitter systems. In rat substantia nigra, some contradiction lies, as different studies identify orexinergic projections and orexin receptor expression
and functional responses in pars reticulate or pars compacta. References are as follows: 3, 25, 47, 53, 58, 88, 94, 95, 97, 111, 113, 119, 122, 129, 154, 155, 193,
195, 196, 225, 242, 263, 265, 283, 310, 355, 357, 367, 369, 370, 392, and 393. Anatomical loci: ArcN, hypothalamic arcuate nucleus; BF, basal forebrain; DR,
dorsal raphé; HTh, hypothalamus; LC, locus coeruleus; LDTN, laterodorsal tegmental nucleus; Msept/DBB, medial septum/diagonal band of Broca; NTS,
nucleus tractus solitarius; POA, preoptic area; PVN, hypothalamic paraventricular nucleus; SCN, (hypothalamic) suprachiasmatic nucleus; SN pc, substantia
nigra pars compacta; SN pr, substantia nigra pars reticulata; TMN, hypothalamic tuberomamillary nucleus; VTA, ventral tegmental area. Transmitters and
receptors: 5-HT, 5-hydroxytryptamine (serotonin); ACh, acetylcholine; AgRP, agouti-related peptide; AMPA-R, AMPA-type glutamate receptor (receptors
formed of GluA1–4 subunits); AVP, arginine vasopressin; CCK, cholecystokinin; CRF1, corticotropin-releasing factor receptor 1; CRH, corticotropin-releasing
hormone; DA, dopamine; Dyn, dynorphins; GHSR, growth hormone secretogogue receptor; GLP-1; glucagon-like peptide 1; HA, histamine; �OR and �OR, �
and � opioid receptors; mEnk, Met-enkephalin; MSH, melanocyte-stimulating hormone (melanocortin); NA, noradrenaline; NMDA-R, NMDA-type glutamate
receptor (heteromers of GluN1 and -N2 subunits); N/OFQ, nociceptin/orphanin FQ; NPY, neuropeptide Y; NT, neurotensin; NTS1/2, neurotensin receptor 1/2;
OT, oxytocin; POMC, proopiomelanocortin; TRH, thyrotropin-releasing hormone; VIP, vasoactive intestinal peptide.
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Feeding and Metabolism

The role of orexins in feeding and metabolic regulation is
complex. The original discovery was that injection of orexins
intracerebroventricularly or into specific CNS nuclei in rats
increased short-term feeding (85, 307, 341, 354). Central
injection of orexins also elevates metabolic rate, at least in part
by activating the sympathetic nervous system [(201); see be-
low]. The major role of orexins is currently considered to be
the regulation of metabolism rather than feeding, as recently
discussed in another review (199); thus, I shall only present a
short overview here.

Important evidence linking orexins to metabolic regulation
was that mice on a high-fat diet are protected against body
weight increase by ectopic overexpression of PPO acting by
increasing energy consumption (112). Central administration
of orexins increases metabolic rate in rodents [see, e.g., (227,
373)]. Orexin-deficient animal models (PPO-KO mice, PPO-
pro-ataxin-3 mice) show somewhat contradictory phenotypes.
Some studies suggest normal growth or even obesity despite
low caloric intake (131, 132, 382), but recently PPO-KO and
PPO-pro-ataxin-3 mice were found to be more sensitive to
high-fat diet-induced obesity than wt mice (132, 321). How-
ever, these models differ from one another. PPO-KO mice lack
the orexin peptides during development whereas ataxin-3 un-
der PPO-pro is expressed only postnatally. Thus, the PPO-KO
animals may show compensatory changes that are less likely to
occur in PPO-pro-ataxin-3 mice. On the other hand, since
orexinergic neurons express other transmitters (see Orexiner-
gic Neurons), elimination of these transmitters together with
orexins in PPO-pro-ataxin-3 mice may give a different pheno-
type. The genetic background of the mice also seems to play a
part (110, 132). Orexins affect the wakefulness pattern and
physical activity, which are parameters not fully considered in
these studies. By extrapolating these data, one might predict
that human narcoleptics would have a lower metabolic rate, but
that does not seem to be the case (107).

Orexinergic neurons are regulated by glucose levels. Food
deprivation or acute hypoglycemia induces PPO mRNA ex-
pression and activates orexinergic neurons; also hypothalamic
mRNA for orexin receptors has been reported to increase in
fasting (180). Electrophysiological studies show activation of
orexinergic neurons by glucose and inhibition by dietary amino
acids. Leptin and insulin may display direct or indirect inhib-
itory effect on these neurons. See Molecular and regulatory
signatures for details.

Metabolic rate and thermogenesis. Central injection of orex-
ins elevates metabolic rate (201), while PPO-KO mice are
defective in elevating metabolic rate to compensate for caloric
intake (321). In rodents, BAT is a major heat producer (and
dissipant upon calorie excess). BAT is regulated by sympa-
thetic nervous system projections from raphé pallidus (260).
CNS administration of orexins stimulates these projections and
increases BAT thermogenesis (32, 277, 362, 413). Orexinergic
neurons may also be important for native activation of BAT;
however, the transmitter is suggested not to be orexin as
indicated by normal regulation in PPO-ko mice (412). Placen-
tally derived orexins are indispensable for embryonic BAT
differentiation (PPO-KO mice) (321). The signaling may occur
via OX1 receptors on brown adipocyte precursors, utilizing p38
MAPK and bone morphogenic protein receptor 1A (BMPR1A)

pathways. These findings represent a new aspect of orexin
research, but there are still many open questions. An interesting
finding in one study (412) is that PPO-ko mice are capable of
normal BAT thermogenesis, whereas this was found to be
grossly impaired in another study (321), despite the apparently
same C57BL/6J background and source. However, if placental
orexins drive the differentiation of normal BAT, then the
phenotype of the pups, with respect to the BAT differentiation,
should be defined by the maternal genotype and not the
genotype of the pups themselves. This actually seems to be the
case since in Zhang et al.’s study (412) heterozygous mothers
were used while the mothers in Sellayah et al.’s study (321)
were homozygous (personal communication with Dr. T. Ku-
waki and Dr. D. Sikder). For a more detailed discussion on
orexins and BAT, please see Kukkonen (199).

Regulation of Wakefulness and Sleep

Various animal models, including PPO-KO and DKO mice
and PPO-pro-ataxin-3 mice and rats, have disrupted regulation
of wakefulness and sleep and a narcoleptic phenotype (Table
2). Single knockout of OX1 or OX2 in mice yields milder
phenotypes while ablation of OX2 alone in dogs is highly
effective (Table 2); thus orexin receptor subtypes may have
different roles in different species. The roles played by the
receptor subtypes in humans are not known, but the issue is
highly relevant for the development of orexin receptor antag-
onists for insomnia (see Medical Use). Ablation of the lateral
hypothalamic orexinergic neurons (and MCHergic and possi-
bly other neurons) by localized injection of orexin-B-saporin
also induces a narcoleptic phenotype (115).

By contrast, intracerebroventricular injection of orexin-A
reduces REM and deep sleep and increases wakefulness (41,
129). Optogenic stimulation of orexinergic neurons in PPO-
pro-channelrhodopsin-2 lentivirus-transduced mice (Table 3)
has a similar effect whereas inhibition of orexinergic neurons
in PPO-pro-halorhodopsin mice gives a mild sleep-inducing
effect (Table 2). It is possible that optogenic techniques cannot
produce a very efficient inhibition of these neurons.

Current thinking is that orexin from orexinergic neurons
stimulates histaminergic (tuberomamillary nucleus), noradren-
ergic (locus coeruleus), serotonergic (raphé nuclei), and cho-
linergic (basal forebrain) neurons to activate, e.g., the cerebral
cortex. Sleep-on GABAergic neurons (ventrolateral preoptic
nucleus [VLPO]), when active, send inhibitory output to orex-
inergic neurons and to these aminergic nuclei. The wake-on
neurons (e.g., in dorsal raphé) also send projections that inhibit
firing of orexinergic neurons (262, 358). As the aminergic
neurons also inhibit VLPO firing, there may be mutual inhib-
itory regulation. The regulation of REM sleep may be more
complex. See Refs. 15, 127, 217, 268, 305, and 311 for detailed
reviews.

Narcolepsy. With one known exception (282), human nar-
colepsy is a sporadic disease. It yet has a genetic component,
strong association with particular MHC/HLA type II haplo-
types, most notably HLA DQB1*0602 (and its “partners”
DRB1*1501 and DQA1*0102) (269, 278), implicating a pos-
sible autoimmune origin.

Two important pieces of evidence as to the mechanism,
though not to the etiology, of narcolepsy were published in
1999. Hereditarily narcoleptic canines were shown to harbor
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inactivating mutations in the OX2 receptor gene (218), and
PPO-KO to lead to a narcoleptic phenotype in mice (61). Soon,
human narcoleptics with cataplexy were demonstrated to show
nil or very low levels of orexin-A in the CSF (270). Ablation
of orexinergic neurons (or orexin target neurons; PPO-pro-
ataxin-3 mice or rats, saporin-orexin-B injections in the rat
lateral hypothalamus) or knockout of both orexin receptor
types in mice (DKO mice) lead to narcolepsy (115, 174, 249).
It is currently believed that orexinergic neurons die in human
narcolepsy, reducing orexin levels and thus their ability to
sustain wakefulness and stabilize the wakefulness and sleep
circuitry. Limited postmortem studies support this view (39,
350 –352). However, the mechanism of the cell death is
unknown. Autoimmunity has been hypothesized but the
evidence is circumstantial, such as the association with HLA
DQB1*0602 and an apparent narcolepsy epidemic that fol-
lowed swine flu vaccinations in Finland and Sweden (267,
340). Autoantibodies have been, during the years, sought for in
human narcoleptics without any very definitive answer. It
seems that even the positive findings, like that concerning the
autoantibodies against Tribbles homolog 2 (73), are difficult to
conclusively explain with respect to narcolepsy as the antibody
target proteins are not exclusively expressed in orexinergic
neurons or may not be easily accessible for antibodies. How-
ever, autoantibodies may not be the only determinant of auto-
immunity, and, in the case of HLA type II, some effects might
be triggered independent of antibody production (104). One
should also consider the possibility that the actual determinant
of the “narcolepsy genotype” is another gene cosegregating
with HLA DQB1*0602.

In the absence of much proof, many different hypotheses for
the mechanisms of the cell death (if that indeed is taking place)
can be presented (104, 199). Death of orexinergic neurons
might occur immunologically triggered or by other means. The
actual target of dysregulation could also lie upstream of orex-
inergic neurons; orexinergic neurons could be maintained by
some upstream neurons, death of which might be enough to
induce decline of orexinergic neurons. On the other hand,
overactive upstream circuitry might induce an excitotoxic
death of orexinergic neurons. Orexinergic neurons themselves
may be particularly sensitive or accessible to an assault. Orex-
inergic neurons might end up dead upon an assault targeted on
other nearby cells (bystander killing). Finally, although maybe
far-fetched, the orexinergic projections meeting orexin neurons
(see Upstream and downstream projections) could be hypoth-
esized to induce neuronal cell death as orexins can induce
death in some other cell types (see Cell Death).

Sympathetic Activation and Stress Response

Orexins can activate sympathetic neurons (368, 372). Intra-
cerebroventricular orexin or administration in brain stem sites
induces sympathetic activation associated with elevated heart
rate, blood pressure, sympathetic neuron activity, glucose up-
take in skeletal muscle, catecholamine release in the circula-
tion, and stereotypic behavior suggestive of stress response
[(201); see also (79, 141, 255, 324, 331, 335, 406) and
Metabolic rate and thermogenesis for BAT]. PPO-KO and
PPO-pro-ataxin-3 mice show lower basal and stress-induced
sympathetic activation (203, 412).

Orexins may activate the hypothalamo-pituitary-adrenal axis
both via pituitary ACTH release and direct stimulation of
adrenal cortex (see Adrenal Gland and Pituitary Gland). How-
ever, the dual orexin receptor antagonist, almorexant, does not
affect ACTH or corticosterone levels nor the hormone re-
sponses to stressful conditions or CRH exposure in rat, sug-
gesting that the role of orexin in this regulation at the central
level is less significant (337).

Other Functions

Endogenous orexins contribute to native analgesia, and an-
algesia can be induced by central (intracerebroventricular,
specific brain sites), intrathecal, and intravenous (but not in-
traperitoneal) orexin administration. This is observed in the
models for acute thermal (hotplate, tail-flick, paw withdrawal),
mechanical (tail-pressure), or chemical/inflammatory (subcu-
taneous formalin, capsaicin or carrageenan, intraperitoneal
acetic acid or MgSO4) pain (18, 35, 253, 376, 399). Analgesia
was blocked by SB-334867 but not the opioid antagonist
naloxone (35, 376). Nociceptin/orphanin FQ induces pain and
inhibits orexinergic neurons and analgesia, but the analgesia
can still be obtained by orexin injection (253, 397). Adenosine
A1 receptor signaling in the brain may act in concert or
downstream of orexins in the antinociceptive responses (253,
376), and histamine H1 or H2 receptor inhibition or knockout
enhances the effect of orexin (252). In rat ventrolateral peri-
aqueductal gray, orexins are suggested to be antinociceptive
via endocannabinoid production and release (18, 142). Orexins
are also effective in models of allodynia (400, 401). Orexin-
ergic neurons are activated in mice by long-lasting stress and
pain (375). PPO-KO and PPO-pro-ataxin-3 mice show less
stress-induced antinociception; central orexin-A administration
restores stress-induced antinociception in the latter (375, 397).
SB-334867 enhances thermal nociception (376) and inflamma-
tory pain (35).

A number of studies [initially in (43, 134)] show a role for
orexins in addiction, and possibly in motivation/reward/rein-
forcement-linked processes [reviewed in (17, 42, 60, 353)].

Intracerebroventricular orexin-A enhances anxiety-like be-
havior in mice and rats, as assessed by behavior in elevated
plus-maze and light-dark tests (339). Similar response is elic-
ited by direct injection of orexins in the thalamic paraventricu-
lar nucleus (213). Nicotine-induced anxiogenic effect is absent
after SB-334867 administration or in PPO-KO mice (284)
while footshock-induced anxiety is abolished by TCS-OX2-29
in the paraventricular nucleus (213). In contrast, others (326)
suggest orexin-A to be anxiolytic. No difference in anxiety was
detected between wt, OX1-KO, or OX2-KO mice (319). SB-
334867 eliminated the panic response in a rat panic anxiety
model (170). Use of the forced swim model for depression
implied opposite roles for OX1 and OX2 receptors in mice
(319).

OREXIN PHYSIOLOGY IN THE PERIPHERY OF THE BODY

Peripheral expression of orexins and orexin receptors has
been investigated mainly in rats using mRNA detection (RT-
PCR, in situ hybridization) and IHC. For the reasons I note
above and previously (199), I have doubts regarding IHC
detection of orexins and orexin receptors. Functional responses
to orexins occur in a number of tissues, although in most cases
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it is unclear whether these are physiologically relevant. Recent
reviews discuss peripheral actions; readers are encouraged to
consult these and the original studies for more in-depth views
(136, 201, 273, 332, 388).

Gastrointestinal Tract

In addition to discovery of orexin peptides and receptors in
the gastrointestinal tract, functional responses have been ob-
served both on the cellular level and in the organ scale (100,
136, 201, 388). mRNA for PPO as well as for OX1 and OX2 are
expressed in rat myenteric plexi (191). Intracerebroventricular
orexin-A stimulates gastric acid secretion (275) while duodenal
intraarterial orexin-A stimulates duodenal bicarbonate secre-
tion in a feeding status-dependent manner (101). Fasting re-
duces mucosal expression of OX1 and OX2 mRNA (28).
Positive and negative effects on gastrointestinal motility of
central or intravenous orexins have been observed (136), pos-
sibly because of the numerous targets of orexins (CNS, para-
sympathetic and enteric ganglia, neuronal circuitry of the
intestine, muscle). Orexins promote depolarization and con-
traction in isolated mouse duodenal muscle (334), thus verify-
ing suggestions based on RT-PCR (191). In guinea pig ileal
strips, orexin-A-induced contraction and acetylcholine over-
flow were considered indirect based on sensitivity to TTx
(244). Guinea pig ileal submucosal and myenteric neurons
are excited by low or mid-nanomolar orexin-A (184, 191).
Vagal afferent neurons (nodose ganglia) of humans and rats
express orexin receptor mRNA, and orexin-A inhibits cho-
lecystokinin response; orexins may thus contribute to gut-
to-CNS signaling (52).

Endocrine Pancreas

Expression of orexin-A, orexin-B, and PPO in the pancreatic
�-cells has been suggested, based on IHC in rat and guinea pig
(6, 190, 264). PPO has been detected by RT-PCR in human
pancreas (264). Orexin receptor expression has also been
reported by both IHC and RT-PCR in pancreatic neurons or
endocrine cells (5, 89, 126, 190, 191, 272). Altered hormone
secretion in responses to orexins has been observed in isolated
cells or islets in some studies. However, there are often
problems related to methodology or interpretation, and contra-
dictory results have been obtained. Subcutaneous orexins stim-
ulate insulin secretion in rats, but the response is strongly
reduced in pancreatic explants, possibly suggesting an indirect
effect (271). OX1 immunoreactivity is suggested to increase in
spontaneously diabetogenic Goto-Kakizaki rats and in strepto-
zotocin-induced diabetes in Wistar rats upon diabetes progres-
sion, especially in dying cells (5).

Adipose Tissue

OX1 and OX2 receptor mRNA have been identified in
human subcutaneous and omental white adipose tissue (82).
Exposure to a high concentration (100 nM) of orexin-A and
-B induced peroxisome proliferator-activated receptor-�2
(PPAR�2) mRNA in subcutaneous adipocytes. By contrast,
orexins strongly reduced mRNA for hormone-sensitive lipase
in omental adipocytes and weakly reduced baseline lipolysis
(82). Preadipocyte-like 3T3-L1 cells express mRNA for OX1

and OX2 receptors (327). Orexin-A (100 nM) stimulated glu-
cose uptake via PI3K-mediated GLUT4 glucose transporter

translocation, reduced hormone-sensitive lipase mRNA and
lipolysis, and stimulated triglyceride synthesis via PI3K and
PPAR�. Orexin-A also stimulated adiponectin secretion from
3T3-L1 cells (327). Results of these two studies thus suggest
that orexin-A may stimulate lipid storage and inhibit lipolysis
in adipocytes, and possibly stimulate proliferation and differ-
entiation [see also (415)]. Switonska et al. (342) show that
subcutaneous orexin-A and orexin-B injections elevate plasma
leptin, but the physiological mechanism is unknown. The effect
of orexin on BAT is discussed under Metabolic rate and
thermogenesis.

Adrenal Gland

Orexin receptor expression and the stimulatory effect of
orexins on rat and human adrenal cortex has been shown in
isolated cells, explants, and intact animals (180, 181, 232, 234,
246, 294). OX1 and OX2 receptor mRNA is expressed in rats
(172, 180, 233), while humans may express mainly OX1

mRNA (181, 246, 294). Orexin receptor stimulation increases
cortisol and corticosterone secretion (depending on the species)
via the classical cAMP/PKA-dependent pathway (232, 234,
246) (Fig. 4D). Some studies have noted increased aldosterone
secretion (232, 266). AC stimulation likely takes place via
activation of Gs protein (Fig. 4D), although the contributions of
the simultaneous activation of Gq ¡ PLC ¡ IP3 cascade and
Gi/o (180, 181, 294) have not been assessed. Orexin receptor
expression and signaling have also been observed in the adre-
nocortical cell line H293R (292, 293). In these cells, orexins
induce enzymes required for steroidogenesis (293, 379). How-
ever, contradictory results have been published in this cell line,
and the signaling seems to differ from that of native cells (293,
379).

Orexin receptor expression (mainly OX1 mRNA) has been
detected in rat adrenal medulla in some (221, 246) but not other
studies (172). While most of the very few studies on functional
responses show no responses or unconvincing ones, clear
responses to orexin-A, in a SB-334867-sensitive manner, have
been noted in amperometric recordings of catecholamine se-
cretion in a mouse preparation (65). Primary human pheochro-
mocytomas express OX2 mRNA and exhibit catecholamine
secretion in response to orexin-A in a PLC ¡ PKC cascade-
dependent manner (245).

Hematopoietic Cells

Three reports on effects of orexin on hematopoietic cells
have been published. Ichinose et al. (162) reported that
orexin-B activates a K� conductance in mouse macrophages.
Extremely high concentrations were required, orexin-A was
less efficacious than orexin-B, and the experimental setup
suffered from some limitations; therefore it is difficult to assess
the significance of these findings. Two other studies have
described expression of OX1 and OX2 receptors in normal and
malignant human hematopoietic CD34-positive stem/progeni-
tor cells (197, 336). No receptor mRNA expression was seen
expressed, but the receptor proteins were detected with anti-
bodies. In addition, it is unclear how an antibody directed
against an intracellular epitope (such as the one for OX1) could
detect the receptor in nonpermeabilized cells (197, 336). The
authors also report a functional response, i.e., cAMP reduction,
in response to rather high orexin concentrations (336). How-
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ever, this response is seen without any “background” AC
stimulation (with, e.g., forskolin or G�s activation); thus this
may not represent a receptor-mediated response. In conclusion,
although hematopoietic cells would represent a very interesting
target for orexin responses, there is no clear proof for receptor
expression among cells of this lineage.

Pituitary Gland

Responses regarding pituitary hormone secretion are very
complex and depend on diurnal variation, estrous cycle, etc.
(201). OX1 receptor mRNA has been identified in rat pituitary
gland (172) while in another study, both receptor mRNAs were
detected, although the levels of OX1 mRNA were higher (75).
All regions of the hypophysis showed expression, but levels
were greatest in the intermediate lobe. In human pituitary, both
receptor mRNAs have been detected (38).

Intracerebroventricular orexin-A strongly stimulated ACTH
release in rats in CRH-dependent manner (7, 48, 202, 310),
while, in isolated rat corticotropes, orexin-A inhibited CRH-
stimulated ACTH release, an effect mediated by a PKC-
dependent pathway downstream of AC (309). PKC stimulation
would otherwise be expected to stimulate ACTH secretion.
Orexin-A potentiated somatotrope growth hormone secretion
in response to growth hormone-releasing hormone (GHRH) in
sheep, probably through PKC-dependent stimulation of L-type
VGCC (62), while in pig pituitary, orexin-B potently stimu-
lated luteinizing hormone (LH) secretion (20). In human nar-
coleptics, ACTH secretion is blunted (194) and diurnal rhythm
of growth hormone secretion is distorted (279).

If the orexin receptors in the pituitary are to be considered to
have a functional role, there should be access of orexins to
these receptors. Orexinergic projections have only been ob-
served in the posterior pituitary (265). It is not clear whether
orexinergic neurites project to the median eminence, a site
from which orexins could be directly released to the pituitary
portal circulation (75, 370). Thus, the physiological role of the
anterior and intermediate lobe orexin receptors is ill-defined. If
not directly innervated by orexinergic neurons, they might
respond to circulating orexins from the hypothalamus or from
another (peripheral?) source.

Elevated levels of CRH and vasopressin mRNAs are ob-
served in hypothalamic paraventricular nucleus after intrace-
rebroventricular orexin-A (7, 48), and orexin-A directly stim-
ulates these neurons (76, 310), suggesting an alternative, indi-
rect link to regulation of hypophyseal release of ACTH.

Reproductive Tract

OX1 but not OX2 mRNA has been detected by RT-PCR in
rat testis and ovaries (172) and in human male reproductive
tract in the testis, epididymis, penis, and seminal vesicle (179).
OX1 expression may be under hypophyseal control (22).
Orexin-A has functional responses in rat testis, stimulating
testosterone production (22) and regulating testicular gene
expression (21).

Peripheral Orexin Sources

If orexin receptors expressed in various peripheral tissues
are physiologically functional, what is the source of the orexin
needed to stimulate these receptors? In principle, the source
could be 1) the CNS, if central orexins enter the blood, such as

orexin-A found in CSF; or 2) a peripheral organ in either an
endocrine or paracrine manner. Studies that have investigated
penetration of orexin from the blood to the rat, mouse, or dog
brain have yielded contradictory results (35, 183); only two
studies (in two species) have assessed the CNS exit of orexin-A
to the plasma (183, 315). Together with the uncertain methods
to measure orexin levels, the data do not yet provide compel-
ling evidence for significant transport of orexin from the CNS
to the blood.

The testis is the only peripheral location in rats where
both PPO mRNA and protein expression have been verified
by Northern blotting, RT-PCR, and IHC (172, 307, 343); in
contrast, no expression has been seen in the ovaries. PPO
mRNA has been detected in human kidney, placenta, stom-
ach, ileum, colon, adrenal gland, and pancreas (264), and
epididymis and penis of male reproductive tract (179). PPO
mRNA has also been detected in mouse placenta (321) and
rat small intestine (longitudinal muscle or myenteric plexi)
(191). Since measurement of plasma orexin is unreliable
(see Antibodies), it is difficult to evaluate circulating orexin
levels.

In case we would fail to find orexins with access to some of
the receptors, we should consider the possibility of other
functions of orexin receptors. One possibility is that they are
regulated by ligands other than orexins. Alternatively, the
receptors may have ligand-independent functions, such as
constitutive activity or ability to act as scaffold proteins.
Finally, receptor expression in some tissues may represent an
evolutionary or developmental remnant of insignificant func-
tional consequence.

CONCLUSIONS AND FUTURE PERSPECTIVES

Significant progress in mapping of the orexin physiology
has been made thanks to the use of modern techniques (e.g.,
transgenic mice and viral vectors). Some novel findings
have been made, as exemplified by the role of orexin in BAT
development. For transgenic animal studies, inducible trans-
genic constructs or local viral vectors may find more use in
orexin studies compared with the use of conventional trans-
genes. Development of orexin receptor agonists is likely to
soon yield novel findings, especially in studies with humans.

At the same time, progress has been slow in some key
areas of orexin research. One such area is orexin peptide and
orexin receptor protein determinations. These would have
important research and even clinical diagnostic value, but
there are as yet no established protocols. Studies of orexin
receptor function at the cellular level are not simple and
have been performed by a small number of research groups.
Therefore the progress has been slow, and the studies have
not always been conducted with a sufficient amount of rigor.
I hope that future efforts will show improvement of these
areas and that the cause of human idiopathic narcolepsy will
be revealed so as to develop both preventive and better
palliative treatment.

Looking back, the first 5 years of orexin research gave us
many seminal findings, and the 10 following years, reviewed
here, were not very much less intriguing. It will be exciting to
see what is discovered regarding orexins and their receptors
during the next 10 years!
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